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performance and cost are not satisfactory 
while the energy density of conventional 
LIBs have almost reached the theoretical 
maximum. To further advance current 
LIBs, numerous efforts have been devoted 
to the exploration of new electrode and 
electrolyte materials.[3]

The historical material research has 
heavily relied on either “trial-and-error” 
processes or serendipity, both of which 
require the vast numbers of tedious exper-
iments (Figure 1a). Such intuition-based 
approaches are often time-consuming 
and inefficient, which cannot avoid the 
consumption of many manpower and 
material resources. In the past 50 years, 
computational chemistry, such as first-
principles (FP) calculations,[4,5] quantum 
mechanics,[6] molecular dynamics (MD)[7] 
and Monte Carlo techniques,[8] has 
become a mature approach to comple-
ment and aid experimental studies for 

predicting and designing new materials. With the rapid devel-
opment of high-performance computations, density functional 
theory (DFT) has been widely applied to high-throughput 
property prediction, which is conducive to the development of 
materials databases, such as Inorganic Crystal Structure Data-
base (ICSD),[9] Cambridge Structural Database,[10] the Materials 
Project[11] database, AFLOWLIB consortium,[12] Open Quantum 
Materials Database,[13] Harvard Clean Energy Project,[14] Elec-
tronic Structure Project,[15] MaterialGo,[16] and so on. However, 

Lithium-ion batteries (LIBs) are vital energy-storage devices in modern 
society. However, the performance and cost are still not satisfactory in terms 
of energy density, power density, cycle life, safety, etc. To further improve the 
performance of batteries, traditional “trial-and-error” processes require a 
vast number of tedious experiments. Computational chemistry and artificial 
intelligence (AI) can significantly accelerate the research and development of 
novel battery systems. Herein, a heterogeneous category of AI technology for 
predicting and discovering battery materials and estimating the state of the 
battery system is reviewed. Successful examples, the challenges of deploying 
AI in real-world scenarios, and an integrated framework are analyzed and 
outlined. The state-of-the-art research about the applications of ML in the 
property prediction and battery discovery, including electrolyte and electrode 
materials, are further summarized. Meanwhile, the prediction of battery 
states is also provided. Finally, various existing challenges and the framework 
to tackle the challenges on the further development of machine learning for 
rechargeable LIBs are proposed.

1. Introduction
With the increasing concerns on the environment and sustain-
ability, it desperately demands advanced energy-storage tech-
nology to support new energy electric vehicles (EVs), and smart 
grids.[1] Attributed to the superior advantages of high operating 
potential and energy/power density, rechargeable lithium-ion 
batteries (LIBs) have emerged as a transformative technology 
since their development in the 1970s.[2] Nevertheless, the 
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there are still many challenges in finding suitable descriptors or 
a model, which limit their effectiveness in exploring complex 
real-world materials due to the high computational cost and 
poor scaling of calculations.[17] For example, high-throughput 
DFT screening only allows limited search space (hundreds 
to thousands of materials), but mostly, the atomic number of 
materials is limited to less than 1000. Besides, large amounts 
of material information data are generally neglected in the data-
bases.[18] Therefore, it is imperative to accelerate material inno-
vation by finding a new research method.

Artificial intelligence (AI) is an emerging technique in mate-
rial science.[19–22] Besides, the combination of AI with big data 
has been regarded as “the fourth paradigm of science”.[23] 
Machine learning (ML), as the core part of AI, can find the sta-
tistical law behind high-dimensional data to produce reliable, 
repeatable decisions and results.[24] ML is also a viable technique 
to couple the small and large time-and-length scales.[25] With the 
ability of fast prediction of new materials or properties, it also 
guarantees high accuracy. ML models, including artificial neural 
network (ANN), support-vector machines (SVM), random forest 
(RF), partial least squares regression (PLS), and logistic regres-
sion (LR), have successfully predicted the properties of battery 
materials. For instance, Nakayama  et  al.[26] combined an ANN 
with DFT for the simultaneous prediction of diffusion bar-
rier and cohesive energy (CE) of the candidate solid electrolyte 
material (olivine group LiMXO4). Moreover, fifteen promising 
solid electrolyte materials for LIBs were screened out by using 
the same approach. Reed et al.[27] developed a data-driven ionic 
conductivity classification model using LR to identify the pos-
sible structures with fast lithium conduction. Twenty-one solid 
electrolyte materials were screened out from the MP database. 
Viswanathan  et  al.[28] conducted a computational screening of 
over 12 000 inorganic solids on the basis of their ability to inhibit 
the dendrite initiation on a Li-metal anode. Twenty mechanically 
anisotropic interfaces with four solid electrolytes were predicted 
to be able to suppress the growth of dendrite. Vegge et al.[29] pre-
sented a blueprint for reversely designing solid electrolyte inter-
phase with excellent performance through utilization of semi-
supervised generative deep learning models, high-throughput 
synthesis, and laboratory testing. Up till now, the publication 
number of academic articles has increased exponentially with 
the key words “AI, ML, and materials”.[30] Undoubtedly, ML has 
become an effective computational method to acquire the com-
position–structure–property relationships in electrode materials 
with high efficiency and accuracy.[31–33]

As is known to all, the health and safety of LIBs is another 
concern.[34,35] In the last few years, the frequent fire accidents 
of EVs have driven the large demands for the battery-man-
agement system (BMS).[36–38] Therefore, developing advanced 
and intelligent BMS to accurately predicate the state of charge 
(SOC) and state of health (SOH) of batteries has become an 
important research topic. In essence, SOC is defined as the 
ratio of capacity in the current state to that in the fully charged 
state, while SOH reflects the current capability of a battery 
for energy storage relative to that when brand new.[39] Various 
models such as equivalent circuit models (ECMs), physics-
based models (PBMs) have been proposed to on-line estimate 
the behaviors of batteries, hoping to obtain a precise SOC 
estimation.[40] Despite that, there still exists a distinct trade-
off between the efficiency of calculation and the accuracy of 
model-based predictions.[41] Fortunately, ML models are able 
to predicate the state of battery since they have the excellent 
computational capability to handle any complex nonlinear 
function.[39,42,43]

Herein, we provide a heterogeneous category of AI tech-
nology for predicating and discovering battery materials and 
estimating the state of battery system. We also analyzed and 
outlined the successful examples, challenges of deploying 
AI in real-word scenarios, and an integrated framework. The 
remainder of the paper is organized as follows: We will first 
briefly provide three categories of ML or AI; then, we will 
summarize the state-of-the-art research about the applications 
of ML in property prediction and battery discovery, including 
electrolyte and electrode materials. Meanwhile, the prediction 
of battery states, such as SOC, SOH, and remaining useful 
life (RUL), is also provided in the above section. The last sec-
tion discusses various existing challenges and the framework 
to tackle the challenges on the further development of ML for 
rechargeable LIBs.

2. Applications in Battery Territory with 
Heterogeneous Categories of AI Technologies
In this section, we present an alternative classification of ML 
algorithms, with respect to the AI capability and then briefly 
introduce the ML applications in LIBs. Subsequently, we out-
line the grand challenges of deploying ML technologies and 
propose a unified architectural framework to tackles these 
challenges.

Compared with the canonical classification (supervised, 
unsupervised, and reinforcement learning) reflecting the 
nature of the “teaching signals” that guide learning,[44] ML algo-
rithms can be better categorized into the following three cat-
egories according to the AI capability for an application domain 
of interest:[45]

1)	 Descriptive AI relies on a set of historical data to yield 
insightful information and possibly prepare the data for 
further analysis. It is always used in data collection and 
analysis to thoroughly and deeply understand what hap-
pened in the system and can be potentially used to model 
system dynamics (e.g., simulator or digital-twin modeling 
for batteries);

Adv. Mater. 2022, 34, 2101474

Figure 1.  Development of methods in new materials discovery.
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2)	Predictive AI attempts to understand the causes of system 
behaviors. It is able to predict the property and/or state of 
the system and is widely employed in fault diagnostics and 
anomaly detection to provide insight on the performance 
(e.g., battery property prediction);

3)	Prescriptive AI provides ways to improve system efficiency. It 
derives optimized configurations/settings/actions for poten-
tial system design and management (e.g., battery design, 
material search, charging protocols, etc.)

This classification maps well with the well-accepted defini-
tion of AI techniques, for machines to approximate human 
intelligence, that is, understanding, reasoning, and ethics.[46] It 
follows that this classification is mutually exclusive collectively 
exhaustive, in that any algorithm has to fall under one and only 
one category.

The past decade has seen the rapid development of AI tech-
nologies, which accelerates the pace of LIBs research in mate-
rial discovery and property prediction.[30,47] ML techniques can 
be used to construct correlations that exist in the data, where a 
crucial correlation in material science is the structure–property 
relation. ML-based applications in material science often begin 
with new dataset construction and/or existing dataset exploi-
tation,[9,48] followed by some descriptive AI/ML approaches to 
extract correlations between energy efficiencies of different 
materials and structures that are then used as the struc-
ture–property selection rules.[49] Furthermore, the integrated 
approach of discriminative models accelerates the exploration 
of large chemical spaces with over 1.6 million molecules.[50] A 
predictive AI-based approach has been used to screen through 
12 000 candidates, which renders the discovery of new Li-ion-
conducting materials.[27] Unlike the discriminative models, 
deep generative models such as prescriptive AI approaches 
based on generative adversarial network[51,52] and reinforce-
ment learning[53] can learn the mapping of conditional prob-
abilities to model a new system itself, which enable materials 
inverse design. In the meanwhile, by thoroughly learning from 
training datasets, ML can model the conditional probabilities 
that predict certain properties/states given the necessary inputs. 
For instance, predictive AI/ML approaches based on regular-
ized linear models and long short term memory models have 
achieved significant accuracy improvement for battery lifespan 
and temperature prediction.[41,54–56]

3. Applications of ML in Rechargeable LIB

Rechargeable LIBs have emerged as a revolutionary energy-
storage technology, which underpins modern life. Figure 2a 
displays the reversibly shuttling lithium ions in electrolyte 
between two electrodes of the device. For improving the elec-
trochemical performance, it is vital to develop suitable elec-
trode and electrolyte materials (Figure  2b,c). Theoretically, we 
can discover the novel materials with the aid of predicting their 
properties. But generally, it is very difficult and expensive to 
determine the properties via standard DFT computational or 
experimental efforts. ML algorithms that can “learn” complex 
correlations and patterns from the existing data, provide a solu-
tion to the materials exploration problem. Meanwhile, although 

the screened battery materials may lead to better performance 
and more complicated battery dynamics, where the safety of 
batteries could be another concern. Thus, predicting the degra-
dation behavior of batteries by ML techniques is also essential 
for the entire electrification system.[57–59] The fundamental goal 
of ML models in rechargeable batteries is to establish the quan-
titative structure–activity relationship (QSAR) between condi-
tional attributes and decision attributes through low-cost and 
accurate predictions.[60] In this section, we will mainly focus 
on the recent applications of ML models for predicting proper-
ties of materials, state of battery, and designing materials for 
rechargeable LIBs.

3.1. Property Prediction

In the application of ML, the most prevalent form is property 
prediction, which is conducive for rapid materials screening. 
The basic workflow for battery material property prediction via 
ML methods as follows: first, feature engineering is beneficial 
to identify the conditional attributes; second, the mapping rela-
tionship is established between these conditional factors and 
the decision attributes through model training; last, various 
properties (battery voltage and ionic conductivity, etc.) can be 
predicted by the trained model. In the next subsections, we will 
discuss the details on properties prediction of rechargeable bat-
tery materials including electrode, liquid electrolyte, and solid 
electrolyte materials.

3.1.1. Electrode Materials

Seeking suitable electrode materials plays a significant role in 
the development of rechargeable LIBs. The properties of elec-
trode materials, for instance, voltage, capacity, electronic/Li-ion 
conductivity, and chemical/electrochemical stability, have been 
taken into consideration for property prediction. Given that the 
intrinsic physical and chemical properties of electrode materials 
are determined by their crystal structure, it is essential to pref-
erentially predict such properties. In this regard, for predicting 
three major crystal systems (monoclinic, orthorhombic, and tri-
clinic) of silicate cathodes with Li–Si–(Mn, Fe, Co)–O composi-
tions, Shandiz et al.[61] conducted a series of machine learning 
classification methods, including ANN, SVM, K-nearest neigh-
bors (KNN), RF, and extremely randomized trees (ERT). Space 
group, formation energy, energy above the hull, band gap, 
number of sites, density, and volume of the unit cell served as 
descriptors, where RF and ERT methods realized the highest 
prediction accuracy. The accuracy was evaluated on the basis 
of Monte Carlo cross validation or called repeated random sub-
sampling method. The result suggests the volume of crystal 
and the number of sites play the determinant role in the type of 
crystal system in the dataset. Moreover, as-proposed approach 
could provide better insight for other researchers to consider 
the correlations between various features of materials.

For the cathode materials, the intercalation characteristics of 
Li ions are pivotal for electrochemical performance. To achieve 
excellent performance, researchers are trying to understand 
the structure–performance relationships through regulating 

Adv. Mater. 2022, 34, 2101474
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the structures and elements of materials. As far as this is con-
cerned, Xiao  et  al.[62] combined ab initio calculations and PLS 
analysis to develop the QSAR formulations of volume changes 
in spinel structure LiX2O4 and layered-structure LiXO2, aiming 
at extending the cycle life of the cathode for LIBs. The authors 
noticed that the descriptors, the radius of X4+ ion and X octa-
hedron, make a great contribution to the volume changes of 
the cathode. Impressively, the established QSAR formulation 
may be further employed to predict the volume change of the 
electrode in various real and “virtual” materials. The challenge 
lies in finding the optimal combination of parameters to lower 
the volume change for designing the low-strain cathode mate-
rials. Apart from the volume change for structural stability, the 
design of cathode materials with high voltage is also extremely 
desirable for achieving high energy density in LIBs. To this end, 
Sarkar et al.[63] utilized multilayer perceptron (MLP) ANN-based 
modeling to predict the voltage of different cathode materials 
for LIBs through choosing the central atom electronegativity 
and the stronger electronegative elements as input parameters. 
However, it lacks large data set to improve the accuracy of ANN 
model, which results in the main challenge in voltage predic-
tion. On the basis of ML, Joshi et al.[64] exploited a tool to predict 
electrode voltages for metal-ion batteries. The deep neural net-
works (DNN), support vector regression (SVR), and kernel ridge 
regression (KRR) were applied as ML algorithms in combination 
with taking data from the Materials Project database, together 
with feature vectors from properties of chemical compounds and 

elemental properties of their constituents. Using their models, 
nearly 5000 electrode materials were proposed as candidates for 
Na- and K-ion batteries. It might be essential to further boost 
the performance of the model for the routine application of 
ML algorithms in predicting the voltage of electrode materials. 
Eremin et al.[65] applied ridge regression (RR) method to predict 
the energy of LiNiO2 and LiNi0.8Co0.15Al0.05O2 cathode materials. 
They found that the topology of Li layers and relative disposi-
tion of Li and Al in the structure of LiNi0.8Co0.15Al0.05O2 are the 
most critical descriptors during the energy balance estimations. 
Moreover, to find the link between manufacturing parameters 
and macroscopic properties of electrodes, Franco  et  al.[66] pro-
posed an AI-based computational strategy to predict the role of 
the manufacturing parameters (active material mass loading 
and porosity) in the characteristics of the final electrode. Three 
different ML algorithms, including decision tree (DT), DNN, 
and SVM were also tested by Franco et al.[66] Among them, SVM 
accurately uncovered several trends linking the electrode mass 
loading and porosity to the slurry characteristics. Based on the 
abovementioned reports, many advanced ML algorithms were 
conducted to predict the key parameters of cathode materials 
with high accuracy. In addition, the SVM method, a kernel-
based regression technique known for its robust performance in 
complex data representations,[64] was frequently carried out for 
predicting the cathode materials.

As to anode materials, the ANN approaches were usually 
employed because it enabled implicit classification of complex 

Adv. Mater. 2022, 34, 2101474

Figure 2.  a) Schematic of the most commonly used Li-ion batteries based on LiCoO2 cathodes and graphite anodes. b) The main properties of Li-ion 
batteries regarding performance. c) The desired properties of electrode and electrolyte materials.
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nonlinear relationships among a relatively large number of 
variables.[67] Allam et al.[68] tried to establish a DFT-ML frame-
work to predict the redox potential of carbon-based molecular 
electrode materials. Based on this analysis, it suggested that 
the electron affinity possessed the highest contribution to 
redox potential, followed by the number of oxygen atoms, the 
HOMO–LUMO gap, the number of lithium atoms, LUMO, and 
HOMO in order, respectively. The predicted redox potentials 
through ANN were in accordance with those calculated from 
DFT modeling, whose averaged error was 3.54%. ANN, a valid 
theoretical tool, was developed by Kalaiselvi  et  al.[69] to under-
stand the charge–discharge characteristics of CoO anode. The 
experimental capacity values well agreed with the estimated/
predicted ones. The chosen ANN approach realized the best fit 
values with an error factor of <1%. Thanks to the as-employed 
ML method, high-accuracy predictions were realized for redox 
potentials or charge–discharge behavior, which were significant 
parameters for anode materials in LIBs.

To summarize, it indicates the successful prediction of elec-
trode materials need to combine the proper descriptors with 
ML methods based on the above examples. Some embedded FS 
methods (such as RF or ERT), as well as some correlation anal-
ysis methods (such as contribution analysis or sequential back-
ward selection algorithm), were carried out to acquire the key 
factors, which could affect the properties of electrode materials. 
Attributed to this, novel materials would be rationally designed 
by researchers. However, in the majority of cases, the relation-
ship between the chosen descriptors and targeted properties 
of materials is complex and nonlinear. Thus, these ML models 
require large data sets to train on. To this end, the employment 
of multiple ML algorithms for modeling and the generation of 
big data obtained by the virtual simulation of the digital twin 
might be beneficial for the optimal prediction ML model.

3.1.2. Electrolyte Materials

Apart from electrode materials, electrolytes, typically including 
the liquid and solid ones, are also indispensable components 
of LIBs. Recently, ML-based methods have provoked numerous 
attentions of many researchers on the properties prediction 
of electrolytes. The current studies are mainly focused on the 
solid electrolyte. However, it still remains a dilemma to esti-
mate the properties of liquid electrolytes due to the difficulty in 
extracting information from disordered structures. For Liquid 
electrolytes, the ion transport at the electrolyte/electrode inter-
face is always concerned and has a large impact on the rate 
performance. Generally, the property of the Li+–solvent pair 
plays a key role in studying the ion transport phenomenon. 
For instance, the coordination energy (Ecoord) and melting 
points of solvents were predicted by Sodeyama  et  al.,[70] who 
also discussed the extracted descriptors through three tech-
niques, including multiple linear regression (MLR), least abso-
lute shrinkage and selection operator (LASSO), and exhaustive 
search with linear regression (ES-LiR). Meanwhile, the estima-
tion accuracy of the three techniques was examined in seeking 
liquid electrolyte materials. Among above techniques, ES-LiR 
reproduced the highest accuracy in the properties estimation. 
They also found that ES-LiR could establish the relationship 

between the “‘prediction accuracy”’ and “‘calculation cost”’ of 
the properties through a weight diagram of descriptors. Simi-
larly, Ishikawa and Sodeyama et al.[71] applied an ML-based tech-
nique, in combination with quantum chemistry calculations, 
to obtain an accurate and efficient approach for predicting the 
Ecoord values of the ions to the solvent. The Ecoord of alkali metal 
ions to solvents was first calculated by DFT for Li, Na, K, Rb, 
and Cs ions and 70 solvents. Then the calculated Ecoord was 
employed as the target properties in the regression using MLR, 
LASSO, and ES-LiR methods. They found that the ionic radius 
was the most significant descriptor and ES-LiR could provide 
the high accuracy for the prediction of Ecoord. ES-LiR applies 
exhaustive search to MLR and introduces the indicator that rep-
resents a combination of non-zero explanatory variables. It is 
possible to estimate the variable and seek the proper indicator 
that optimizes the combination of descriptors when the rela-
tionship between descriptors and the objective variable is linear. 
However, ES-LiR may fail when the relationship is not linear. 
To learn the nonlinear relationship and obtain higher accuracy, 
the algorithm that applies exhaustive search with Gaussian pro-
cess is ES-GP. The efficiency and accuracy for practical use in 
seeking for battery electrolytes were high enough with as-pro-
posed regression models.

In recent years, the use of electrolyte additives as an eco-
nomical way is expected to promote the electrochemical per-
formance. The redox potential of additive is one of the most 
important indicators that allow their use as additives. Oka-
moto  et  al.[72] conducted ab initio molecular orbital calcula-
tions to investigate the redox potentials of 149 representative 
molecules that could serve as electrolyte additives. Then the 
calculated potentials were trained to build regression models by 
employing ML-based method. They chose the chemical struc-
tures of additive molecules as descriptors to predict the redox 
potentials by the Gaussian kernel ridge regression (GKRR) and 
gradient boosting regression (GBR) methods. Although the 
two methods well reproduced the oxidation potentials, GBR 
showed the superiority in predicting the reduction potentials. 
GKRR combines the Gaussian kernel method and RR with 
L2-norm regularization term. The Gaussian kernel provides 
nonlinear character and can efficiently learn relationships that 
traditional linear regression fail to obtain. In the meanwhile, 
GBR applies ensemble DT to build a regression model so that 
it can be updated by minimizing the loss function according to 
the gradient in a stepwise manner. Therefore, when there are 
sufficient training data, GBR will outperform GKRR approach. 
It is worth noting that a principal cause of LIBs failure is the 
degradation of electrolyte. Thus, it is very important to ascer-
tain the concentration of LiPF6 and weight fractions of solvents 
in an unknown electrolyte. Normally, the electrolyte is analyzed 
quantitatively by employing gas chromatography–mass spec-
trometry (GC-MS), inductively coupled plasma optical emission 
spectrometry (ICP-OES), and et al, while these instruments are 
high-cost and the corresponding measurements are complex. 
Dahn et al.[73] presented a new method by using Fourier trans-
form infrared and an ML algorithm to probe the concentrations 
of major components in the liquid electrolytes. The method 
agreed well with the consequences from GC-MS/ICP-OES, 
which was favorable for accelerating electrolyte analysis of aged 
LIBs and disclosing the cell degradation mechanisms.

Adv. Mater. 2022, 34, 2101474
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In summary, different properties of liquid electrolytes, such 
as temperature, molecular concentration, composition, have 
served as descriptors for prediction. Due to the complex non-
linear relationship between the descriptors and the properties 
of electrolytes, SVM and ANN were usually employed. In above-
mentioned reports, the small data restricted the ANN model, 
of which the prediction performance would be enhanced when 
increasing the sample size.

All-solid-state batteries have drawn great interest in recent 
years. Using solid electrolytes is a promising solution for solving 
the safety issues, improving energy density and widening elec-
trochemical window of LIBs.[74] The desired solid electrolyte 
materials need to satisfy several criteria, such as fast Li-ion con-
duction, wide electrochemical window, negligible electronic con-
duction, high mechanical rigidity, and robust chemical stability. 
Many ML-based methods have been reported to predict these 
properties of solid electrolytes. For instance, Nakayama et al.[26] 
developed a supervised feed-forward neural network (NN) to pre-
dict the Li-ion diffusion barrier/hopping energy (EA) and CE in 
the olivine-type LiMXO4 solid electrolytes. In the model, several 
structural and component variables are identified as key descrip-
tors such as the intra-atomic parameters, effective charges of cat-
ions, ionic radius, and so on. Impressively, the model with two 
external attributes is more accurate and interpretable in contrast 
to the model with a single response variable. The feed-forward 
NN model indeed shows the better prediction result for the 
Li-ion diffusion barrier as compared to PLS-derived models.[75] 
By combining DFT computation with NN, they construct a 
model to predict migration energy (ME), where input features 
are derived from the database fulfilled by structural informa-
tion from DFT-optimized crystal structures of various composi-
tions. The input features are preprocessed and fed into the NN 
model for the training and validation. Subsequently, the model 
randomly learns many local atomic environments and then is 
able to predict unknown structure types that are not included 
in the training dataset. Moreover Nakayama  et  al.[76] also suc-
ceeded in formulating the feed-forward NN model to predict the 
ME of tavorite-type LiMTO4F solid electrolytes with the same 
descriptors. Theoretically, the selected predictor variables in the 
feed-forward NN model can be applied to the other structure 
types. Later, Nakayama  et  al.[77] established a Bayesian-optimi-
zation-driven DFT-based approach to predict the ME of tavorite-
type Li- and Na-containing compounds. In sharp contrast with 
random search even under a strict condition of having a posi-
tively skewed ME sample distribution, the Bayesian optimization 
search method was relatively more efficient.

Apart from the ME and EA, the Li-ion conductivity also can 
be directly predicted by using ML-based methods. For example, 
Ibrahim et al.[78] studied the impact from chemical composition 
and temperature on the ionic conductivity of the polymer electro-
lyte system. A Bayesian neural network (BNN) was developed to 
predict the ionic conductivity of the nanocomposite polymer elec-
trolyte system. In the BNN model, the inputs are chemical com-
positions and temperatures, while the outputs are the ionic con-
ductivities of the polymer electrolytes. The predicted results dem-
onstrated that different chemical compositions and temperatures 
affected the ionic conductivity of the polymer electrolyte system, 
in line with the experimental results. Tanaka et  al.[79] employed 
SVR method with a Gaussian kernel to predict the low-tempera-

ture ionic conductivities of the LISICON-type superionic conduc-
tors with descriptors of diffusivity at 1600 K, the average volume 
of the disordered structure, order–disorder phase transition tem-
perature. These descriptors were determined from the theoretical 
and experimental data. Using the model, the authors predicted 
that γ-Li4GeO4 and several other compounds exhibited a few time 
higher ionic conductivity than LISICON Li3.5Zn0.25GeO4 at 373 K.  
Albeit only pseudobinary solid solutions being considered in 
the study, the as-presented methodology was not strictly confined 
to such systems, indicating its potential for rational prediction 
of other Li-ion conductors. For garnet-type solid electrolytes, 
Kireeva et al.[80] applied SVR model to predict the Li-ion conduc-
tivity, thus developing the composition–structure–ionic-conduc-
tivity relationships and surveying garnet-related structures for 
promising compositions with t-stochastic triplet embedding. The 
data visualization techniques are attractive for virtual screening. 
Miwa et al.[81] studied the Li-conduction properties of Nb-doped 
garnet-type oxide Li7La3Zr2O12 (LLZO) by the MD simulations 
with the MLP. The predicted Li-ion conductivity at 298 K and the 
activation energy matched well with the experimental data. Fur-
thermore, the as-presented approach correctly predicted two Li 
occupation sites of 24 d and 96 h, offering the 3D network of the 
Li migration pathway.

The prediction of mechanical properties for solid electro-
lytes is also very imperative because the dendritic growth of Li 
metal anodes can be inhibited by them. The crystal graph con-
volutional neural network (CGCNN) model was proposed by 
Ahmad et al.[28] to predict the shear and bulk moduli of the crys-
talline solid electrolyte materials. Besides, they employed GBR 
and KRR to predict the elastic constants of materials with the 
cubic crystal structure. As the core part of the CGCNN model, 
the multigraph representation of the crystal structure encoded 
the atomic and the bonding interactions information. As a 
result, the authors identified that the promising solid electro-
lytes with some common features such as high anisotropy and 
mechanical softness could optimize the dendrite suppression 
and ion conduction. Liu et al.[82] applied SVM and KRR models 
to estimate the possible reactions and thermodynamic stability 
of Li|Li7La3Zr2O12 (LLZOM, M = dopant)) interfaces. Through 
the as-proposed model, they predicted 18 unexplored dopants 
M in LLZOM systems against Li metal, which were affirmed in 
the automated route built by an FP approach. According to their 
study, the MO chemical bond strength plays a dominant role 
in the stability of the Li|LLZOM interface. Assisted by machine 
learning, Hatzell  et  al.[83] employed advanced in situ imaging 
techniques to track morphological transformations at Li|LLZO 
interface. The ML methods realized segmentation of lithium 
and pores from the reconstructions of in situ conditions. The 
ML-assisted in situ X-ray imaging technique offered data for 
physical insight into microstructure transformation in Li metal 
as well as solid electrolytes during cycling. Based on the above 
examples, when applying descriptors such as ion radius, elec-
tronegativity, bond lengths, and bond angles, it enabled ideal 
prediction in Li-ion conductivity for solid electrolyte materials.

Albeit differences existing in the various algorithms, standout 
prediction performance for electrode materials and electrolytes 
has been achieved by most of the ML methods, as summarized 
in Table 1. However, the data availability is the major limitation 
for the applications of ML in materials prediction.

Adv. Mater. 2022, 34, 2101474

 15214095, 2022, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202101474 by U
niversity of Shanghai for Science and T

echnology, W
iley O

nline L
ibrary on [20/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



© 2021 Wiley-VCH GmbH2101474  (7 of 17)

www.advmat.dewww.advancedsciencenews.com

Adv. Mater. 2022, 34, 2101474

Table 1.  Application of ML in the prediction of rechargeable battery materials.

Material types Materials Dataset Algorithms Achievements Refs.

Cathode Li–Si–(Mn, Fe, Co)–O Materials Project, ICSD ANN, SVM, KNN, RF, ERT Predicting 3 major crystal systems [61]

Cathode LiX2O4 (X = Ti, V, Cr, Mn,  
Fe, Co, Ni, Nb, Mo, Ru,  

Rh, Pd, Ta, Ir)

Calculated results from DFT PLS Predicting the volume change values 
of 28 cathodes

[62]

Cathode LiNiO2, LiMn2O4, LiTiS2, 
LiV2(PO4)3, etc.

ICSD ANN Predicting the voltage values of  
31 cathodes

[63]

Cathode ACoO2, ANiO2, ATiO2, etc.  
(A = Li, Na, K)

Materials Project DNN, SVR, KRR Proposing nearly 5000 candidate 
electrode materials for Na- and K-ion 

batteries

[64]

Cathode LiNiO2, LiNi0.8Co0.15Al0.05O2 Computed statistics RR Predicting the energy of configuration 
in LNO and NCA cathodes

[65]

Cathode LiNi1/3Mn1/3Co1/3O2 ARTISTIC project webpage DT, DNN, SVM Predicting the impact of the  
manufacturing parameters on the 

final electrode characteristics

[66]

Anode Carbon-based molecular 
electrode materials

Data from other publications ANN Predicting the redox potentials with 
low averaged error

[68]

Anode CoO Experimental data ANN Predicting the charge–discharge 
behavior of CoO with an error factor 

of <1%

[69]

Liquid electrolyte 103 solvent molecules, such 
as propylene carbonate and 

ethylene carbonate

103 solvent molecules which were 
commercialized as battery-grade 

materials from KISHIDA Chemical 
Co., Ltd.

MLR, LASSO, ES-LiR Predicting the coordination energies 
and melting points of 103 solvent 

molecules

[70]

Liquid electrolyte 70 solvents and five ions  
(Li, Na, K, Rb, and Cs)

70 solvents taken from commer-
cialized battery-grade materials 

from KISHIDA Chemical Co., Ltd.

MLR, LASSO, ES-LiR Predicting the coordination energies 
of 70 solvents

[71]

Electrolyte 
additives

149 electrolyte additives Data from other publications GKRR, GBR Predicting the redox potentials of  
149 representative molecules

[72]

Solid electrolyte LiMXO4 (M—main group 
elements, X—group XIV and 

group XV elements)

The chemical search space in the 
LiMXO4 system, a total of  

72 compositions

NN Predicting the Li-ion diffusion barrier 
and CE of 72 compositions

[26]

Solid electrolyte Olivine-type LiMXO4 (main 
group M2+–X5+, M3+–X4+)

Li-ion hopping energy computed 
by nudged-elastic-band method

PLS Predicting the Li-ion hopping energy 
combined with nudged-elastic-band 

method

[75]

Solid electrolyte Tavorite-type LiMTO4F Database of structural  
information extracted from DFT 

optimized crystal structures  
of different compositions  

(M–T pairings).

NN Predicting the Li ME of LiMTO4F 
with chemical substitutions at M 

and T sites

[76]

Solid electrolyte Tavorite-type AMXO4Z  
(A: Li, Na; M: group 2, 3, 4, 13 
elements; X: group 14, 15, 16 

elements; Z: F, Cl, Br, I)

Data from other publications and 
newly calculated datasets

Bayesian-optimization-
driven DFT-based 

approach

Predicting the ion ME of tavorite-type 
Li- and Na-containing compounds

[77]

Solid electrolyte Nanocomposite polymer 
electrolyte system 

(PEO–LiPF6–ECCNT)

Experimental data BNN Predicting the ionic conductivity of 
nanocomposite polymer electrolyte 

systems (PEO–LiPF6–EC–CNT)

[78]

Solid electrolyte LISICON-type superionic 
conductors

Theoretical and experimental data SVR with a Gaussian 
kernel

Predicting the low-temperature ionic 
conductivity of 72 compounds

[79]

Solid electrolyte Garnet-type metal oxides Experimental data SVR Predicting the Li-ion transport 
characteristics and identifying the 

descriptors that are responsible for 
high Li-ion conductivity in garnet-

structured oxides

[80]

Solid electrolyte Garnet-type oxide Li7La3Zr2O12 
(LLZO)

Theoretical and experimental data MD simulations with 
(MLP)

Predicting the Li-conduction proper-
ties of Nb-doped garnet-type oxide 

Li6.75La3(Zr1.75Nb0.25)O12

[81]
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3.1.3. Battery State Prediction

LIBs are increasingly playing a pivotal role in accelerating the 
electrification process of vehicles. For EV batteries, there are 
five crucial guidelines: lifetime, specific energy, specific power, 
cost, and safety.[84,85] The former four aspects have achieved 
great improvements by optimizing the electrode and electrolyte 
materials during the past decade,[86] however, the safety issue 
has not been adequately addressed by most of the stakeholders 
in the EV market. Accurate determination of SOC/SOH and 
reliable prediction of RUL will alleviate the problem and unlock 
improvements in battery manufacturing, usage, and optimi-
zation. For example, end users can estimate the expected bat-
tery life to allow the usage of batteries to their fullest potential 
before replacement or disposal.[87–89] Likewise, manufacturers 
can grade new cells by their expected lifetime to accelerate the 
cell testing, validation, and manufacturing processes. Thus, an 
intelligent BMS that can predict and monitor battery behavior 
is essential for the entire electrification system.[39,90,91]

In order to develop an intelligent BMS, battery modeling, as 
the core part, is vital in determining the current state of battery 
and predicting the future state of batteries.[92–95] The battery 
models studied in the literature mainly fall into the empirical/
semi-empirical models, ECMs, PBMs and, more recently, data-
driven models (DDMs) with artificial intelligence algorithms 
(Figure 3).[96–98] Each model has its own advantages and draw-
backs with respect to accuracy and complexity. For example, 

many empirical and semi-empirical approaches are very 
simple, but the predictive power is lost due to the oversimpli-
fication in some cases.[99] ECMs have gained much interest in 
real-time status predictions due to their simplified model struc-
ture. But it remains a grand challenge in obtaining high accu-
racy.[100] PBMs can provide the internal physical and chemical 
properties of batteries such as the Li-ion concentration, how-
ever, it is difficult to be applied in real-time applications due to 
the computational complexity of the coupled partial differential 
equations and a large number of unknown variables.[101] Based 
on the above, an appropriate balance between model fidelity 
and computational complexity has become the key obstacle in 
current battery models. Recently, DDMs with ML techniques 
have emerged as a potential modeling approach since they had 
the excellent computational capability to handle any complex 
nonlinear functions with low computational cost.[102–104] Gener-
ally, ML uses a fitting function from the experimental training 
data to make predictions for other battery systems. Various 
models such as linear model,[54,105] ANNs,[106–113] SVM,[114–120] 
RF,[121–123] Kalman filters,[124–126] gated recurrent unit recur-
rent neural network,[127] convolutional neural network,[128,129] 
DNN,[130] JAYA,[131] metabolic extreme learning machine,[132] 
and Gaussian/Bayesian regression,[133–135] have been reported to 
be able to predict the states of batteries. Below we will elabo-
rate some of the most recent DMMs employed to estimate the 
different battery states for LIBs. For example, Severson et al.[54] 
used a linear regression model to predict the cycle life of 

Adv. Mater. 2022, 34, 2101474

Figure 3.  Development of battery models.

Material types Materials Dataset Algorithms Achievements Refs.

Solid electrolyte 12 000 inorganic solids Materials Project CGCNN, GBR, KRR Screening 12 950 solids using iso-
tropic stability criteria and over 15 000 
interfaces using anisotropic stability 
criteria of electrodeposition on the Li 

metal anode

[28]

Solid electrolyte Li7La3Zr2O12 (LLZOM,  
M = dopant)

Materials Project SVM, KRR Evaluating possible reactions and the 
thermodynamic stability of Li|LLZOM 

interfaces under various chemical 
conditions

[82]

Solid electrolyte LLZO Experimental data Deep convolution neural 
network

Effective segmentation to extract 
quantitative metrics of the electrodes 

during cycling

[83]

Table 1.  Continued.
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commercial lithium iron phosphate/graphite batteries through 
statistical and machine-learning techniques. The simple linear 
model with a typical error of 9.1% allows low computational 
cost and fast computational time. Moreover, Li  et  al.[105] also 
found a linear regression relationship between the specific peak 
locations from the incremental capacity analysis spectra and the 
SOH of a cell. The developed estimation function enabled less 
than 2.5% maximum errors in the SOH evaluation of batteries.

However, the linear models are unstable for RUL estimation 
since the battery capacity fade may accelerate under extreme 
conditions.[136] To solve this, Fermin  et  al.[137] proposed the 
identification mechanism of “knee-onset” (beginning of the 
nonlinear degradation) and “knee-points” by using a combina-
tion of a Bacon–Watts model and an SVM. The RF machine 
is successfully used to predict the RUL of the battery.[138] The 
approach enabled a typical prediction error of 3.3% by only 
reading the variation of voltage with the time. However, it is 
difficult to ensure the accuracy of the model when the RF algo-
rithm is utilized for the prediction of battery life, leading to a 
big prediction error. In view of the issue, Li et al.[121] proposed 
to use the genetic algorithms to optimize the RF model, which 
strengthens the prediction accuracy. An SVM was employed 
by Nuhic  et  al.[139] to simultaneously predict SOH and RUL 
of LIBs. Taking account of the influence of environmental 
changes and loading conditions, the SVM was combined with a 
new method for training and data testing based on loading col-
lectives. Yang et al.[140] proposed a three-layer back propagation 
NN to evaluate the SOH with a 5% error. The parameters of 
the first-order ECMs served as inputs, while the current value 
of SOH was the output. Zahid et al.[141] presented a subtractive 
clustering-based neuro-fuzzy system to estimate SOC of LIBs. 
The model inputs current, temperature, actual power dissipa-
tion, and available power to predict the SOC with a maximum 
estimation error <  0.1%. Experimental results illustrated that 
the proposed model enabled sufficient accuracy and surpassed 
the NN model. Sahinoglu et al.[134] employed Gaussian process 
regression framework to estimate the SOC of LIBs. The meas-
ured battery parameters, such as voltage, current, and tempera-
ture, were used as inputs. The simulations and experimental 
results suggested the advantage in comparison to the SVM and 
NN predictions.

Among these models, it is a complicated problem to select 
an appropriate ML approach, which relies on the amount of 
data available, the expected quality of results and the physical 
interpretability of the model. Due to the high levels of accuracy 
when predicting SOC, NNs are the most preferable approach. 
Nevertheless, the preferred ML approach is more nuanced 
during the SOH or RUL prediction. For example, Gaussian pro-
cesses were employed[142–144] owing to the relative insufficiency 
in data, which could lead to probably safety-critical health 
diagnostics. The RUL could be represented as the number of 
remaining charge/discharge cycles. The integer rather than 
continuous quantity rendered it suitable for RF. Moreover, as 
many ML approaches were black boxes, it was more critical for 
a physical understanding. This manifested that it was better for 
the straightforward nature of linear regression.

Although great efforts have been made in developing data-
driven ML approaches for battery management, there are still 
several challenges. For instance, most studies mainly rely on 

the collected data from a small number of cells, which is often 
not shared. Thus, it lacks systematically collected, standardized, 
and accessible experimental battery data. Recently, an abun-
dance of data from the internet-of-things becomes available 
attributed to the low-cost sensing and increased deployment of 
devices.[145] Another challenge is to comply with the constrains 
of real-world deployment when constructing data-driven ML 
models by designing battery cycling experiments. Nevertheless, 
these experiments are high cost and time consuming, which 
is not feasible for small, individual laboratory. The digital-twin 
approach could establish a virtual representation of the physical 
system to simulate the variable real-world operating conditions. 
Besides, the approach can collect enough data to improve the 
ML models.[145] More details will be discussed in Section 4.

3.2. Materials Discovery and Design

The discovery and design of new battery materials aims to find 
proper electrodes or electrolytes with desirable properties to 
improve the performance and safety of LIBs. The modern com-
putational tools are able to make a prediction for the properties 
of particular materials under specific conditions. However, up 
to now, the inverse design of battery materials has been com-
putationally infeasible due to the massive complexity.[146,147] As 
mentioned in section  3.1, the construction of a model is the 
most vital step in the property prediction, which will precisely 
depict the relationship between the input descriptors (structural 
or elementary information) and output target properties (con-
ductivity or stability) of the known materials. Contrary to the 
property prediction, the properties of materials are the input 
and the structure and composition are the output in an inverse 
materials design. That is, the key issue is to identify the chem-
ical components and structures of materials, which can be syn-
thesized in the lab.

For the discovery and design of materials, the first step is to 
generate the key descriptors or features that are closely asso-
ciated with the material property of interest (Figure 4). The 
construction of an accurate model between the descriptors and 
target properties is the second step. Theoretically, on the basis of 
the ML model trained in a given dataset (materials→properties), 
the inverse design can be conducted to discover the new mate-
rials with the intended properties. Two major approaches are 
involved-large scale screening and mathematical optimization 
to realize the design process. For the large scale screening 
method, it is the first step for the generation of all possible 
target materials in the design space, followed by the test of 
materials using the as-built ML model.[148] Meanwhile, there are 
some constraints to consider on the material representation in 
the form of a structure or composition-based function. In terms 
of the issue, a systematic process is necessary to identify these 
candidate materials. On the other hand, the reverse materials 
design can also be formulated as a mathematical optimization 
problem. The optimization-based method tries to identify the 
candidate materials without testing them one by one, reducing 
the complexity.[149,150] Once the optimal materials are identified, 
one can synthesize them and verify their properties experi-
mentally. If the experimental results are consistent with the 
predicted ones computationally, the materials are discovered 

Adv. Mater. 2022, 34, 2101474
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and designed successfully. If not, the obtained results can be 
added to the training dataset to retrain the ML model. The cycle 
creates a feedback loop to improve the accuracy and refine the 
followed discovered and designed cycles. Although the compu-
tational materials discovery has made great progress that was 
outlined in the 2019 materials design roadmap,[151] it is short of 
successful examples of inverse materials design and the closed-
loop inverse materials design will be the long-term goal.

Next, some selected examples are analyzed to highlight the 
role of ML in discovering battery materials. As we all know, 
the high-capacity Li-excess LiNixMnyCo(1−x−y)O2 (NMC) layered 
oxides have been considered as a promising candidate because 
of their high reversible capacities. However, the practical appli-
cation is limited due to the severe voltage decay. A key driver 
for improvements is the modifications of the cathode compo-
sition. Houchins  et  al.[152] developed a NN potential using fin-
gerprinting and performed hyperparameter optimization of 
the fingerprinting parameters. They use the ML calculator to 
predict the structural effects due to insertion/de-insertion of 
lithium and the open-circuit voltage for any composition of 
LiNixMnyCo(1−x−y)O2 cathode. The predicted voltage profiles are 
highly consistent with the experimental ones. This provides 

an approach to rapidly design and optimize the NMC cathode 
material family in the phase space. The performance of LIBs 
can be also improved by introducing interfacial coating mate-
rials, which can eliminate the formation of undesired inter-
phases and enhance the cyclability of batteries. Wang  et  al.[153] 
employed the machine-learned interatomic potentials models 
in the form of moment tensor potentials to identify two prom-
ising coating materials. This approach reduces the computing 
time and increases the efficiency of the calculations by 7 orders 
of magnitude relative to the pure ab initio MD (Figure 5a). The 
redox stability of electrolyte also has an enormous impact on 
the electrochemical performance. For this, one can design new 
organic solvents with proper redox potential possessing reduc-
tion and oxidation stability at both the anode and cathode.[154] 
Tagade et al.[155] proposed a binary representation to digitize the 
molecular structure and used the semi-supervised algorithm to 
map the relationship between structures and properties. Mean-
while, they applied Bayesian approach to ascertain the gen-
eration of the valid solvent molecular structures. Finally, many 
organic solvent structures were discovered, which had a lower 
reduction potential than the used anode to enable an electro-
chemical window of 4.8 V. These desired attributes guarantee the 

Adv. Mater. 2022, 34, 2101474

Figure 4.  The basic workflow for battery materials discovery and design by ML methods.
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stability of the liquid electrolyte across the full operating range of 
LIBs. For the commercial liquid organic electrolytes, there are 
potential safety issues owing to their volatility and flammability. 
Thus, the design of novel solid electrolytes with high ionic con-
ductivity is of great significance to develop all-solid-state LIBs 
since they are less flammable and safe. Zhang  et  al.[156] used 
the unsupervised learning approach to screen all known Li-con-
taining compounds from ICSD. The trained model cluster the 
solid-state Li-ion conductors (SSLCs) into groups of compounds 
with high conductivity and other groups with poor ionic conduc-
tion. Conducting the ML model, 16 new fast Li-conductors with 
conductivities of 10−4 to 10−1 S cm−1 were discovered (Figure 5b). 
The discovered candidates have entirely different structures and 
chemical compositions compared with the current known fast 
Li-ion conductors. Recently, a new framework for designing 
solid polymer electrolytes was proposed by Wang  et  al,[157] 
which combined coarse-grained MD with Bayesian optimiza-
tion (CGMD-BO), as shown in Figure  5c. The CG simulation 
could preserve molecular-level information, constructing a 
continuous high-dimensional design space. The BO algorithm 
showed the unique advantages of efficiency and flexibility in 
optimizing lithium ionic conductivity with the molecular-level 
material properties as descriptors. The CGMD-BO framework 
was expected to be an emerging approach for designing other 
complex multicomponent material systems.

Several aforementioned successful examples have mani-
fested the enormous potential and advantage of the ML method 
in discovering new materials and revealing the structure–prop-
erty relationship. However, there are still lots of challenges 
and a huge space for further development of ML in material 
design. Owing to the lack of datasets availability, some dilemma 
still exists in the data collection stage for machine learning 
methods. In addition, to evaluate the properties of the different 
structures, the available method is constructing ML models for 
quantitative structure property relationship or to convert the 
structure prediction into an optimization problem. Neverthe-
less, the current framework for structure prediction can only 
predict the known structures instead of unknown structures. 
Thus, it is urgent to address the issue that how to incorporate 
the domain knowledge summarized in experiments or implicit 
in heuristic rules for new-type structural prediction when devel-
oping ML models.

Given the challenges in model parameterization and the 
highly nonlinear and coupled nature of battery degradation 
processes, many efforts have been devoted to seeking high-effi-
ciency data-driven approaches for the predication of materials 
and states. Many ML methods, such as ANN. SVM, DT, etc., 
have been commonly employed in previous reports. Neverthe-
less, a major disadvantage is that as-employed ML approaches 
demand large amount of experimental training data to create an 

Adv. Mater. 2022, 34, 2101474

Figure 5.  a) Flowchart of the “machine learning–molecular dynamics” ionic conductor screening process. b) Schematics of the unsupervised discovery 
of SSLCs. c) Illustration of the coarse-grained molecular dynamics−Bayesian optimization framework. a) Adapted with permission.[153] Copyright 2020, 
American Chemical Society. b) Adapted under the terms of the CC-BY Creative Commons Attribution 4.0 International license (https://creativecom-
mons.org/licenses/by/4.0).[156] Copyright 2019, The Authors, published by Springer Nature. c) Adapted with permission.[157] Copyright 2020, American 
Chemical Society.
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accurate model. In addition, the reliability of these approaches 
is beyond the experimental training set.[145]

4. Challenges of Deploying AI in Real-World 
Scenarios and an Integrated Framework
While it has been highly touted that AI or ML would advance 
and transform a lot of domains, including applications in LIB 
territory,[64,68,72,156,158] practical deployment of AI/ML algorithms 
into real-world scenarios still faces great challenges that are 
model and data. Learning-based approaches can extract com-
plicated and nonlinear patterns in the training datasets and 
translate the meta-data to statistical models that are able to 
implement prediction, classification, optimization, or detection 
problem for specific applications. In the most accepted format 
of the supervised learning model, it entails a two-phase process, 
that is, training and inference. In the training phase, ML algo-
rithms absorb the labeled datasets to learn parameter/weight 
values in the model. In the inference phase, the trained model 
takes the input of new data points to make an inference about 
the corresponding label. However, in real-world applications 
with physical systems, this process faces two inherent chal-
lenges, as follows:

a)	Data scarcity. Learning-based statistical model, especially 
the deep learning with myriad tunable parameter requires 
a massive amount of training data to ensure model quality. 
In the real physical system in the battery area, however, the 
collection and/or access to large amounts of data remains 
challenging due to high cost, long delays, and concerns over 
compliance and safety; for instance, the probability of a bat-
tery cell catastrophically failing related to historical condi-
tions (e.g., voltage, operating rates, temperature, mechanical 
shock, etc.), as well as unmeasurable manufacturing defects. 
The challenge remains in accumulating training data in rare 
events/conditions, where involving failure scenarios would 
enhance the accuracy of DMMs and finally realize predic-
tions of failures/anomalies.[159] Many pioneers have pub-
lished datasets of battery failure comprising hundreds of 
cells, such as from NASA,[160] but the datasets are far smaller 

than what are required to grab the failure scenarios. Further-
more, owing to the sensitivity to operating conditions (e.g., 
temperature, load-profile, etc.) and highly variable condi-
tions, the real-world lifespan estimation of batteries has cell-
to-cell variations. These variations are often hard to measure 
and cover due to manufacturing inconsistencies.[161] All these 
challenges in data acquisition have seriously affected the 
deployment of ML algorithms in real-world scenarios.

b)	Cost-safety concerns. Material search, property prediction, 
design, and management of battery systems are critical prob-
lems in the LIB economy and safety. For instance, regulating 
energy systems inevitably leads to intrinsic safety risks, and 
Li-ion technology is not exempt from incidents. It is unfor-
tunate that the LIB is often the victim of fierce cost cutting, 
and people try to cram more and more energy in the same 
volume.[162] Further, it is of interest to predict the property/
performance of the battery system over long horizons for 
safety reasons and service-level agreement with customers. 
A warning coming too early or too late may turn out to be 
incorrect maintenance or lead to ignoring the imminent 
failure, which renders the increase of system risks and 
costs that are unacceptable.[163] Additionally, the high cost of 
materials for LIBs (e.g., negative/anode electrode materials, 
electrolytes, etc.) not only promises battery chemistries, but 
also puts forward higher requirements for battery design 
and accurate material exploration in order to reduce the 
cost of performance assessment and manufacturing.[85,164] 
ML-based approaches are supposed to take into account all 
uncertainties and unpredictable events/conditions in the 
energy systems. Due to historical reasons (e.g., limited data, 
safety compliance, etc.), however, the management/opera-
tion/design of energy systems still depend to a large extent 
on the decision-making of human experts,[165] rendering the 
industry with a risk-averse mindset. As a consequence, these 
critical nature demand novel approaches in adopting ML 
solutions into the battery-system economy.

To tackle these daunting challenges, we have proposed to 
integrate ML algorithms of different nature into a unified 
framework (Figure 6), pivoting around the digital twin, to pro-
mote advanced applications in the battery-system economy. The 

Adv. Mater. 2022, 34, 2101474

Figure 6.  Illustration of a closed-loop framework for the design, material discovery, property prediction, and cell management of battery systems using 
digital twins and AI capabilities.
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proposed framework is depicted in Figure  6, including three 
modules, which are physical systems/scenarios, digital twin, 
and AI engine. The physical system represents the real environ-
ment/system which is the target (e.g., battery design, material 
discovery, cell management, etc.) of learning-based approaches. 
The digital twin represents the digitalized cyber environments/
models of the real-world scenarios. Physical and data-driven 
models are available to construct the digital twin, where the 
physical model is often constructed based on the physical rules, 
and the DMM is trained via massive historical data from the 
real environment or system. Both of them aim to precisely imi-
tate the dynamics and behaviors of the real environment and 
are able to synthesize additional datasets and assess the per-
formance of AI-based optimization approaches. AI engine rep-
resents the learning-based approaches to optimize/diagnose/
control real-world systems. In the proposed framework, the AI 
engine is recommended to interact with the digital twin to avoid 
the risks of adopting ML algorithms on the physical system as 
well as reduce the verification costs of the experiment and trial 
production. These three modules interact among themselves 
through different forces (i.e., AI capabilities), as follows:

a)	The route from the physical system to the digital twin rep-
resents the digitalization of the real-world environment via 
descriptive AI/ML. Raw data (e.g., chemical structure, par-
ticle size, etc.) is sampled from the physical system. The 
descriptive AI aims to ensure the data quality and analyze 
the composition of data to understand the complex behaviors 
of the system to model the digital twin. The digital twin has 
high flexibility and can be a set of formulations, simulators, 
or learning-based models.

b)	The cyclic route between the digital twin and AI engine rep-
resents the implementation of prescriptive AI on the digital 
twin to optimize/solve the problems of the real-world sys-
tems. Instead of the physical system or component, these 
learning algorithms can directly interact with the digital twin 
to grab internal behaviors and learn complicated patterns of 
the system. The digital twin can synthesize the data under 
any condition in a relatively short time that enriches the 
diversity of the training dataset used by the AI engine. In 
addition, the route between the well-trained AI agent and the 
digital twin presents that the digital twin can conduct the val-
idation before the deployment of AI recommended actions, 
resulting in cost savings and safety improvement.

c)	The route from digital twin to physical system represents the 
prediction of the states in the future given specified inputs. 
The data-driven twin can also learn system behaviors from 
the historical data via the predictive AI. The sophisticated 
AI model is then able to predict future states (e.g., lifetime, 
SOC, SOH, etc.) of the system without exposing the physical 
system to the uncertainties of the AI algorithm. Further-
more, based on the predicted results, proper actions can also 
be implemented in the physical system to guarantee the sta-
bility or improve the performance of the system.

The proposed framework integrates the ML approaches with 
different nature (i.e., prescriptive, descriptive, and predictive 
ML/AL) and the three modules (i.e., physical system, digital 
twin, and AI engine) to offer the benefits as follows:

a)	Data enrichment. Enriching the datasets to achieve high 
quality and diversity plays a critical role in ML algorithms. 
Descriptive AI captures inherent mechanisms of the target 
system to model accurate digital twin, which guarantees the 
synthetic data quality. Specifically, a well-constructed digital 
twin is able to synthesize diverse data (e.g., failures, anoma-
lies, data under different conditions) that are rarely observed 
from the real-world environment or may put the system in 
jeopardy. The trustable data improve the diversity of training 
datasets and will then empower the AI engine and elevate 
the stability and applicability of ML approaches.

b)	Efficient and safe deployment. The digital twin is the key 
component of the proposed framework and is used to con-
duct the pre-training and validate the effects of ML-based 
optimizations. In the proposed framework, training the AI 
engine on the digital twin in lieu of the physical system puts 
an end to the risks of misoperation and/or incorrect recom-
mendations. Additionally, as the training data is finite, it is 
not ensured that the promising early results obtained in cur-
rent training datasets will actually translate to correct deploy-
ment due to the engineering complexity. Consequently, the 
high-fidelity digital twin is then used to validate the recom-
mended actions from the AI engine in advance, to evaluate 
the safety and estimate the performance.

5. Summary and Outlook

Computational chemistry has become a mature approach to 
complement and aid experimental studies for predicting and 
designing new materials, and many materials databases have 
been developed. The combination of AI with the materials data-
bases is promising to accelerate materials innovation for bat-
teries. Moreover, machine learning modes are also powerful 
in developing BMS, which is closely related to the health and 
safety of LIBs.

To promote electrochemical performance, it is vital to develop 
suitable electrode and electrolyte materials. Theoretically, novel 
materials can be discovered with the aid of predicting proper-
ties. However, in many instances, it is very challenging and 
expensive to determine the properties via large-scale experi-
ments or DFT computations. ML algorithms can “learn” com-
plex correlations and patterns from the existing data, providing 
a solution to the rapid screen of materials. The basic workflow 
for battery material property prediction via ML methods as fol-
lows: first, feature engineering is beneficial to identify the con-
ditional attributes; second, the mapping relationship is estab-
lished between these conditional factors and the decision attrib-
utes through model training; last, various properties (battery 
voltage, ionic conductivity, etc.) can be predicted by the trained 
model.

Although the screened battery materials may lead to better 
performance and more complicated battery dynamics, the 
safety of batteries could be another concern, especially for EV 
batteries. Accurate determination of the SOC/SOH and reli-
able prediction of RUL will alleviate the problem and unlock 
improvements in battery manufacturing, usage, and optimi-
zation. An intelligent BMS that can predict and monitor bat-
tery behavior is critical for both end-users and manufacturers. 

Adv. Mater. 2022, 34, 2101474
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Thus, predicting the degradation behavior of batteries by ML 
techniques is also essential for the entire electrification system. 
The fundamental goal of ML models in rechargeable batteries 
is to establish the QSAR between conditional attributes and 
decision attributes through low-cost and accurate predictions.

Modern computational tools can predict the properties of 
particular materials under specific conditions. However, up to 
now, the inverse design of battery materials has been compu-
tationally infeasible due to the massive complexity. Contrary 
to the property prediction, the properties of materials are the 
input, and the structure and composition are the output in an 
inverse materials design. The key issue is to identify promising 
chemical components and structures of materials, which can 
be synthesized in the lab. Aiming at the discovery and design 
of materials, the first step is to generate the key descriptors or 
features that are closely associated with the material proper-
ties of interest. The next step is to construct an accurate model 
between the descriptors and target properties. Theoretically,  
according to the ML model trained by a given dataset  
(materials → properties), the inverse design can be conducted 
to discover new materials with the intended properties.

While it has been highly touted that AI or ML would advance 
and transform the LIB territory, practical deployment of AI/ML 
algorithms into real-world scenarios still faces great challenges. 
Learning-based approaches can extract complicated and non-
linear patterns from the training datasets and translate the meta-
data to statistical models. In the most accepted format of the 
supervised learning model, it entails a two-phase process, that 
is, training and inference. However, in real-world applications 
with physical systems, this process faces two inherent challenges, 
that is, data scarcity and cost safety concern. To tackle these chal-
lenges, we propose to integrate ML algorithms of different nature 
into a unified framework, pivoting around the digital twin, to pro-
mote advanced applications in the battery-system economy. The 
proposed framework includes three modules, which are phys-
ical systems/scenarios, digital twin, and AI engine. These three 
modules interact among themselves through different forces 
(i.e., AI capabilities). The proposed framework integrates the ML 
approaches with different nature (i.e., prescriptive, descriptive, 
and predictive ML/AL) and the three modules to offer the ben-
efits, such as data enrichment, efficiency, and safe deployment.

Acknowledgements
C.L., X.Z., and L.Z. contributed equally to this work. Q.Y. acknowledges 
the funding support from Singapore MOE AcRF Tier 1 grant nos. 2020-
T1-001-031, and Tier 2 grant nos. 2017-T2-2-069. Y.W. acknowledges 
the Nation Research Foundation, Prime Minister’s Office, Singapore 
under its Energy Programme (EP Award No. NRF2017EWT-EP003-023) 
administrated by the Energy Market Authority of Singapore; its Green 
Data Centre Research (GDCR Award No. NRF2015ENC-GDCR01001-003) 
administrated by the Info-communications Media Development 
Authority. M.S. gratefully acknowledges the financial support from 
National Research foundation of Singapore Investigatorship Award 
Number NRFI2017-08 and AStar AME programmatic funding number 
A20H3g2140. S.L. acknowledges the financial support from the Academic 
Research Fund Tier 1 (RG8/20), Tier 1 (RG104/18) and the computing 
resources from National Supercomputing Centre Singapore. The 
authors also like to acknowledge 111 project (D18023) from Zhengzhou 
University for their support for this work.

Conflict of Interest
The authors declare no conflict of interest.

Keywords
lithium-ion batteries, machine learning, materials discovery and 
prediction, state prediction

Received: February 22, 2021
Revised: May 24, 2021

Published online: September 7, 2021

[1]	 D. Lindley, Nature 2010, 463, 18.
[2]	 V.  Etacheri, R.  Marom, R.  Elazari, G.  Salitra, D.  Aurbach, Energy 

Environ. Sci. 2011, 4, 3243.
[3]	 A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2017, 2, 16103.
[4]	 Y. S. Meng, M. E. Arroyo-de Dompablo, Energy Environ. Sci. 2009, 

2, 589.
[5]	 A. Ullah, A. Majid, N. Rani, J. Energy Chem. 2018, 27, 219.
[6]	 H. Heinz, H. Ramezani-Dakhel, Chem. Soc. Rev. 2016, 45, 412.
[7]	 M.  Endo, C.  Kim, K.  Nishimura, T.  Fujino, K.  Miyashita, Carbon 

2000, 38, 183.
[8]	 R. N.  Methekar, P. W. C.  Northrop, K.  Chen, R. D.  Braatz,  

V. R. Subramanian, J. Electrochem. Soc. 2011, 158, A363.
[9]	 A. Belsky, M. Hellenbrandt, V. L. Karen, P. Luksch, Acta Crystallogr., 

Sect. B: Struct. Sci. 2002, 58, 364.
[10]	 C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystal-

logr., Sect. B: Struct. Sci. 2016, 72, 171.
[11]	 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, 

S.  Cholia, D.  Gunter, D.  Skinner, G.  Ceder, K. A.  Persson, APL 
Mater. 2013, 1, 011002.

[12]	 S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, 
L. J.  Nelson, G. L. W.  Hart, S.  Sanvito, M.  Buongiorno-Nardelli, 
N. Mingo, O. Levy, Comput. Mater. Sci. 2012, 58, 227.

[13]	 J. E.  Saal, S.  Kirklin, M.  Aykol, B.  Meredig, C.  Wolverton, JOM 
2013, 65, 1501.

[14]	 J.  Hachmann, R.  Olivares-Amaya, S.  Atahan-Evrenk, C.  Amador-
Bedolla, R. S.  Sánchez-Carrera, A.  Gold-Parker, L.  Vogt,  
A. M. Brockway, A. Aspuru-Guzik, J. Phys. Chem. Lett. 2011, 2, 2241.

[15]	 C.  Ortiz, O.  Eriksson, M.  Klintenberg, Comput. Mater. Sci. 2009, 
44, 1042.

[16]	 J.  Jie, M.  Weng, S.  Li, D.  Chen, S.  Li, W.  Xiao, J.  Zheng, F.  Pan, 
L. Wang, Sci. China: Technol. Sci. 2019, 62, 1423.

[17]	 C. Chen, Y. Zuo, W. Ye, X. Li, Z. Deng, S. P. Ong, Adv. Energy Mater. 
2020, 10, 1903242.

[18]	 W.  Sha, Y.  Guo, Q.  Yuan, S.  Tang, X.  Zhang, S.  Lu, X.  Guo, 
Y.-C. Cao, S. Cheng, Adv. Intell. Syst. 2020, 2, 1900143.

[19]	 T. Zhou, Z. Song, K. Sundmacher, Engineering 2019, 5, 1017.
[20]	 K. K. Yang, Z. Wu, F. H. Arnold, Nat. Methods 2019, 16, 687.
[21]	 J. Wei, X. Chu, X.-Y. Sun, K. Xu, H.-X. Deng, J. Chen, Z. Wei, M. Lei, 

InfoMat 2019, 1, 338.
[22]	 R. Jose, S. Ramakrishna, Appl. Mater. Today 2018, 10, 127.
[23]	 A. Agrawal, A. Choudhary, APL Mater. 2016, 4, 053208.
[24]	 A. Chen, X. Zhang, Z. Zhou, InfoMat 2020, 2, 553.
[25]	 G. H. Gu, J. Noh, I. Kim, Y. Jung, J. Mater. Chem. A 2019, 7, 17096.
[26]	 R. Jalem, M. Nakayama, T. Kasuga, J. Mater. Chem. A 2014, 2, 720.
[27]	 A. D.  Sendek, Q.  Yang, E. D.  Cubuk, K.-A. N.  Duerloo, Y.  Cui,  

E. J. Reed, Energy Environ. Sci. 2017, 10, 306.
[28]	 Z. Ahmad, T. Xie, C. Maheshwari, J. C. Grossman, V. Viswanathan, 

ACS Cent. Sci. 2018, 4, 996.

Adv. Mater. 2022, 34, 2101474

 15214095, 2022, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202101474 by U
niversity of Shanghai for Science and T

echnology, W
iley O

nline L
ibrary on [20/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



© 2021 Wiley-VCH GmbH2101474  (15 of 17)

www.advmat.dewww.advancedsciencenews.com

[29]	 A.  Bhowmik, I. E.  Castelli, J. M.  Garcia-Lastra, P. B.  Jørgensen, 
O. Winther, T. Vegge, Energy Storage Mater. 2019, 21, 446.

[30]	 Y. Liu, B. Guo, X. Zou, Y. Li, S. Shi, Energy Storage Mater. 2020, 31, 
434.

[31]	 H. Xu, J. Zhu, D. P. Finegan, H. Zhao, X. Lu, W. Li, N. Hoffman, 
A.  Bertei, P.  Shearing, M. Z.  Bazant, Adv. Energy Mater. 2021, 11, 
2003908.

[32]	 R. E.  Brandt, R. C.  Kurchin, V.  Steinmann, D.  Kitchaev, C.  Roat, 
S. Levcenco, G. Ceder, T. Unold, T. Buonassisi, Joule 2017, 1, 843.

[33]	 A. Mistry, A. A. Franco, S. J. Cooper, S. A. Roberts, V. Viswanathan, 
ACS Energy Lett. 2021, 6, 1422.

[34]	 L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, J. Power Sources 2013, 226, 
272.

[35]	 M.  Berecibar, I.  Gandiaga, I.  Villarreal, N.  Omar, J.  Van Mierlo, 
P.  Van den Bossche, Renewable Sustainable Energy Rev. 2016, 56, 
572.

[36]	 X.  Feng, M.  Ouyang, X.  Liu, L.  Lu, Y.  Xia, X.  He, Energy Storage 
Mater. 2018, 10, 246.

[37]	 M. Shen, Q. Gao, Int. J. Energy Res. 2019, 43, 5042.
[38]	 K. Liu, K. Li, Q. Peng, C. Zhang, Front. Mech. Eng. 2019, 14, 47.
[39]	 Y. Li, K. Liu, A. M. Foley, A. Zülke, M. Berecibar, E. Nanini-Maury, 

J.  Van Mierlo, H. E.  Hoster, Renewable Sustainable Energy Rev. 
2019, 113, 109254.

[40]	 D. N. T. How, M. A. Hannan, M. S. H. Lipu, P. J. Ker, IEEE Access 
2019, 7, 136116.

[41]	 M.-F.  Ng, J.  Zhao, Q.  Yan, G. J.  Conduit, Z. W.  Seh, Nat. Mach. 
Intell. 2020, 2, 161.

[42]	 C.  Vidal, P.  Malysz, P.  Kollmeyer, A.  Emadi, IEEE Access 2020, 8, 
52796.

[43]	 A.  Jokar, B.  Rajabloo, M.  Désilets, M.  Lacroix, J. Power Sources 
2016, 327, 44.

[44]	 K. Doya, Neural Networks 1999, 12, 961.
[45]	 P. Chemouil, P. Hui, W. Kellerer, Y.  Li, R. Stadler, D. Tao, Y. Wen, 

Y. Zhang, IEEE J. Sel. Areas Commun. 2019, 37, 1185.
[46]	 T. H. Davenport, Harv. Bus. Rev. 2013, 91, 64.
[47]	 M. Aykol, P. Herring, A. Anapolsky, Nat. Rev. Mater. 2020, 5, 725.
[48]	 J. J. Irwin, B. K. Shoichet, J. Chem. Inf. Model. 2005, 45, 177.
[49]	 S.  Curtarolo, D.  Morgan, K.  Persson, J.  Rodgers, G.  Ceder, Phys. 

Rev. Lett. 2003, 91, 135503.
[50]	 R.  Gómez-Bombarelli, J.  Aguilera-Iparraguirre, T. D.  Hirzel, 

D.  Duvenaud, D.  Maclaurin, M. A.  Blood-Forsythe, H. S.  Chae, 
M. Einzinger, D.-G. Ha, T. Wu, G. Markopoulos, S. Jeon, H. Kang, 
H. Miyazaki, M. Numata, S. Kim, W. Huang, S. I. Hong, M. Baldo, 
R. P. Adams, A. Aspuru-Guzik, Nat. Mater. 2016, 15, 1120.

[51]	 G. L. Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. L. C. Farias, 
A. Aspuru-Guzik, arXiv: 1705.10843, 2017.

[52]	 S. Kench, S. J. Cooper, Nat. Mach. Intell. 2021, 3, 299.
[53]	 B.  Sanchez-Lengeling, C.  Outeiral, G. L.  Guimaraes,  

A.  Aspuru-Guzik, ChemRxiv 2017, https://doi.org/10.26434/chem-
rxiv.5309668.v3.

[54]	 K. A.  Severson, P. M.  Attia, N.  Jin, N.  Perkins, B.  Jiang, Z.  Yang,  
M. H. Chen, M. Aykol, P. K. Herring, D. Fraggedakis, M. Z. Bazant, 
S. J. Harris, W. C. Chueh, R. D. Braatz, Nat. Energy 2019, 4, 383.

[55]	 J. Li, X. Li, D. He, IEEE Access 2019, 7, 75464.
[56]	 S. Zhu, C. He, N. Zhao, J. Sha, J. Power Sources 2021, 482, 228983.
[57]	 Y. Zhang, Q. Tang, Y. Zhang, J. Wang, U. Stimming, A. A. Lee, Nat. 

Commun. 2020, 11, 1706.
[58]	 N. Harting, R. Schenkendorf, N. Wolff, U. Krewer, Appl. Sci. 2018, 

8, 821.
[59]	 A.  Naha, A.  Khandelwal, S.  Agarwal, P.  Tagade, K. S.  Hariharan, 

A. Kaushik, A. Yadu, S. M. Kolake, S. Han, B. Oh, Sci. Rep. 2020, 
10, 1301.

[60]	 B. Wu, S. Han, K. G. Shin, W. Lu, J. Power Sources 2018, 395, 128.
[61]	 M. Attarian Shandiz, R. Gauvin, Comput. Mater. Sci. 2016, 117, 270.
[62]	 X. Wang, R. Xiao, H. Li, L. Chen, J. Materiomics 2017, 3, 178.

[63]	 T.  Sarkar, A.  Sharma, A. K.  Das, D.  Deodhare, M. D.  Bharadwaj, 
in 2014 2nd Int. Conf. on Devices, Circuits and Systems (ICDCS), 
IEEE, Piscataway, NJ, USA 2014, https://doi.org/10.1109/
ICDCSyst.2014.6926140.

[64]	 R. P.  Joshi, J.  Eickholt, L.  Li, M.  Fornari, V.  Barone, J. E.  Peralta, 
ACS Appl. Mater. Interfaces 2019, 11, 18494.

[65]	 R. A.  Eremin, P. N.  Zolotarev, O. Y.  Ivanshina, I. A.  Bobrikov, J. 
Phys. Chem. C 2017, 121, 28293.

[66]	 R. P.  Cunha, T.  Lombardo, E. N.  Primo, A. A.  Franco, Batteries 
Supercaps 2020, 3, 60.

[67]	 P. Hennig, M. Kiefel, J. Mach. Learn. Res. 2013, 14, 843.
[68]	 O. Allam, B. W. Cho, K. C. Kim, S. S. Jang, RSC Adv. 2018, 8, 39414.
[69]	 T. Parthiban, R. Ravi, N. Kalaiselvi, Electrochim. Acta 2007, 53, 1877.
[70]	 K.  Sodeyama, Y.  Igarashi, T.  Nakayama, Y.  Tateyama, M.  Okada, 

Phys. Chem. Chem. Phys. 2018, 20, 22585.
[71]	 A.  Ishikawa, K. Sodeyama, Y.  Igarashi, T. Nakayama, Y. Tateyama, 

M. Okada, Phys. Chem. Chem. Phys. 2019, 21, 26399.
[72]	 Y. Okamoto, Y. Kubo, ACS Omega 2018, 3, 7868.
[73]	 L. D. Ellis, S. Buteau, S. G. Hames, L. M. Thompson, D. S. Hall,  

J. R. Dahn, J. Electrochem. Soc. 2018, 165, A256.
[74]	 A. M. Nolan, Y. Zhu, X. He, Q. Bai, Y. Mo, Joule 2018, 2, 2016.
[75]	 R.  Jalem, T.  Aoyama, M.  Nakayama, M.  Nogami, Chem. Mater. 

2012, 24, 1357.
[76]	 R. Jalem, M. Kimura, M. Nakayama, T. Kasuga, J. Chem. Inf. Model. 

2015, 55, 1158.
[77]	 R.  Jalem, K.  Kanamori, I.  Takeuchi, M.  Nakayama, H.  Yamasaki, 

T. Saito, Sci. Rep. 2018, 8, 5845.
[78]	 S. Ibrahim, M. R. Johan, Int. J. Electrochem. Sci. 2011, 6, 5565.
[79]	 K.  Fujimura, A.  Seko, Y.  Koyama, A.  Kuwabara, I.  Kishida, 

K.  Shitara, C. A. J.  Fisher, H.  Moriwake, I.  Tanaka, Adv. Energy 
Mater. 2013, 3, 980.

[80]	 N. Kireeva, V. S. Pervov, Phys. Chem. Chem. Phys. 2017, 19, 20904.
[81]	 K. Miwa, R. Asahi, Phys. Rev. Mater. 2018, 2, 105404.
[82]	 B.  Liu, J.  Yang, H.  Yang, C.  Ye, Y.  Mao, J.  Wang, S.  Shi, J.  Yang, 

W. Zhang, J. Mater. Chem. A 2019, 7, 19961.
[83]	 M. B. Dixit, A. Verma, W. Zaman, X. Zhong, P. Kenesei, J. S. Park, 

J.  Almer, P. P.  Mukherjee, K. B.  Hatzell, ACS Appl. Energy Mater. 
2020, 3, 9534.

[84]	 J. M. Tarascon, M. Armand, Nature 2001, 414, 359.
[85]	 R.  Schmuch, R.  Wagner, G.  Hörpel, T.  Placke, M.  Winter, Nat. 

Energy 2018, 3, 267.
[86]	 A.  Kwade, W.  Haselrieder, R.  Leithoff, A.  Modlinger, F.  Dietrich, 

K. Droeder, Nat. Energy 2018, 3, 290.
[87]	 S. B.  Peterson, J.  Apt, J. F.  Whitacre, J. Power Sources 2010, 195, 

2385.
[88]	 V.  Ramadesigan, P. W. C.  Northrop, S.  De, S.  Santhanagopalan,  

R. D.  Braatz, V. R.  Subramanian, J. Electrochem. Soc. 2012, 159,  
R31.

[89]	 W. Waag, C. Fleischer, D. U. Sauer, J. Power Sources 2014, 258, 321.
[90]	 X. Hu, S. E. Li, Y. Yang, IEEE Trans. Transp. Electrif. 2016, 2, 140.
[91]	 M.  Berecibar, F.  Devriendt, M.  Dubarry, I.  Villarreal, N.  Omar, 

W. Verbeke, J. Van Mierlo, J. Power Sources 2016, 320, 239.
[92]	 Y. Zhang, R. Xiong, H. He, Z. Liu, in 2017 Prognostics and System 

Health Management Conf. (PHM-Harbin), IEEE, Piscataway, NJ, 
USA 2017, https://doi.org/10.1109/PHM.2017.8079316.

[93]	 T. Wu, M. Wang, Q. Xiao, X. Wang, Smart Grid Renewable Energy 
2012, 3, 51.

[94]	 K.-H. Tseng, J.-W. Liang, W. Chang, S.-C. Huang, Energies 2015, 8, 
2889.

[95]	 N. Dawson-Elli, S. B. Lee, M. Pathak, K. Mitra, V. R. Subramanian, 
J. Electrochem. Soc. 2018, 165, A1.

[96]	 P. Khumprom, N. Yodo, Energies 2019, 12, 660.
[97]	 J. Wu, Y. Wang, X. Zhang, Z. Chen, J. Power Sources 2016, 327, 457.
[98]	 D. P.  Finegan, J.  Zhu, X.  Feng, M.  Keyser, M.  Ulmefors, W.  Li,  

M. Z. Bazant, S. J. Cooper, Joule 2021, 5, 316.

Adv. Mater. 2022, 34, 2101474

 15214095, 2022, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202101474 by U
niversity of Shanghai for Science and T

echnology, W
iley O

nline L
ibrary on [20/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.26434/chemrxiv.5309668.v3
https://doi.org/10.26434/chemrxiv.5309668.v3
https://doi.org/10.1109/ICDCSyst.2014.6926140
https://doi.org/10.1109/ICDCSyst.2014.6926140
https://doi.org/10.1109/PHM.2017.8079316


© 2021 Wiley-VCH GmbH2101474  (16 of 17)

www.advmat.dewww.advancedsciencenews.com

[99]	 M.  Schimpe, M. E.  von  Kuepach, M.  Naumann, H. C.  Hesse, 
K. Smith, A. Jossen, J. Electrochem. Soc. 2018, 165, A181.

[100]	 Y. Wang, J. Tian, Z. Sun, L. Wang, R. Xu, M. Li, Z. Chen, Renewable 
Sustainable Energy Rev. 2020, 131, 110015.

[101]	 W. He, M. Pecht, D. Flynn, F. Dinmohammadi, Energies 2018, 11, 
2120.

[102]	 M. Aykol, C. B. Gopal, A. Anapolsky, P. K. Herring, B. van Vlijmen, 
M. D.  Berliner, M. Z.  Bazant, R. D.  Braatz, W. C.  Chueh, B. 
D. Storey, J. Electrochem. Soc. 2021, 168, 030525.

[103]	 P. Gasper, K. Gering, E. Dufek, K. Smith, J. Electrochem. Soc. 2021, 
168, 020502.

[104]	 S. R.  Hashemi, A.  Bahadoran Baghbadorani, R.  Esmaeeli, 
A. Mahajan, S. Farhad, Int. J. Energy Res. 2021, 45, 5747.

[105]	 Y.  Li, M.  Abdel-Monem, R.  Gopalakrishnan, M.  Berecibar, 
E.  Nanini-Maury, N.  Omar, P.  van  den Bossche, J.  Van Mierlo, J. 
Power Sources 2018, 373, 40.

[106]	 L. Kang, X. Zhao, J. Ma, Appl. Energy 2014, 121, 20.
[107]	 S. Tong, J. H. Lacap, J. W. Park, J. Energy Storage 2016, 7, 236.
[108]	 E. Chemali, P. J. Kollmeyer, M. Preindl, A. Emadi, J. Power Sources 

2018, 400, 242.
[109]	 T. H. Donato, M. G. Quiles, Adv. Comput. Intell. 2018, 5, 1.
[110]	 D. Jiménez-Bermejo, J. Fraile-Ardanuy, S. Castaño-Solis, J. Merino, 

R. Álvaro-Hermana, Procedia Comput. Sci. 2018, 130, 533.
[111]	 A. G. Kashkooli, H. Fathiannasab, Z. Mao, Z. Chen, J. Electrochem. 

Soc. 2019, 166, A605.
[112]	 J.  Kleiner, M.  Stuckenberger, L.  Komsiyska, C.  Endisch, Batteries 

2021, 7, 31.
[113]	 V.  Chandran, C. K.  Patil, A.  Karthick, D.  Ganeshaperumal, 

R. Rahim, A. Ghosh, World Electr. Veh. J. 2021, 12, 38.
[114]	 J. C. Álvarez Antón, P. J. García Nieto, F. J. de Cos Juez, F. Sánchez 

Lasheras, M.  González Vega, M. N.  Roqueñí Gutiérrez, Appl. 
Math. Model. 2013, 37, 6244.

[115]	 J. N. Hu, J. J. Hu, H. B. Lin, X. P. Li, C. L. Jiang, X. H. Qiu, W. S. Li, 
J. Power Sources 2014, 269, 682.

[116]	 L. Yao, Z. Fang, Y. Xiao, J. Hou, Z. Fu, Energy 2021, 214, 118866.
[117]	 Y.  Jia, J.  Li, C.  Yuan, X.  Gao, W.  Yao, M.  Lee, J.  Xu, Adv. Energy 

Mater. 2021, 11, 2003868.
[118]	 T.  Lan, K.  Jermsittiparsert, S. T.  Alrashood, M.  Rezaei, L.  Al-

Ghussain, M. A. Mohamed, Energies 2021, 14, 569.
[119]	 Z. Fei, F. Yang, K.-L. Tsui, L. Li, Z. Zhang, Energy 2021, 225, 120205.
[120]	 T. Sun, R. Wu, Y. Cui, Y. Zheng, J. Energy Storage 2021, 39, 102594.
[121]	 C. Li, C. Zhang, in 2020 IEEE Int. Conf. on Prognostics and Health 

Management (ICPHM), IEEE, Piscataway, NJ, USA 2020, https://
doi.org/10.1109/ICPHM49022.2020.9187060.

[122]	 Y. Zhang, Z. Peng, Y. Guan, L. Wu, Energy 2021, 221, 119901.
[123]	 D.  Roman, S.  Saxena, V.  Robu, M.  Pecht, D.  Flynn, Nat. Mach. 

Intell. 2021, 3, 447.
[124]	 A. A. Hussein, Int. J. Mod. Nonlinear Theor. Appl. 2014, 3, 199.
[125]	 C.  Huang, Z.  Wang, Z.  Zhao, L.  Wang, C. S.  Lai, D.  Wang, IEEE 

Access 2018, 6, 27617.
[126]	 X. Tan, D. Zhan, P. Lyu, J. Rao, Y. Fan, J. Power Sources 2021, 484, 

229233.
[127]	 J. Chen, X. Feng, L. Jiang, Q. Zhu, Energy 2021, 227, 120451.
[128]	 Y. Yang, Appl. Energy 2021, 292, 116897.
[129]	 K. Kaur, A. Garg, X. Cui, S. Singh, B. K. Panigrahi, Int. J. Energy Res. 

2021, 45, 3113.
[130]	 T.  Nguyen-Thoi, X.  Cui, A.  Garg, L.  Gao, T. T.  Truong, Energy 

Technol. 2021, 9, 2100048.
[131]	 Y.  Guo, Z.  Yang, K.  Liu, Y.  Zhang, W.  Feng, Energy 2021, 219, 

119529.
[132]	 L. Chen, H. Wang, B. Liu, Y. Wang, Y. Ding, H. Pan, Energy 2021, 

215, 119078.
[133]	 C. Hu, G. Jain, C. Schmidt, C. Strief, M. Sullivan, J. Power Sources 

2015, 289, 105.

[134]	 G. O.  Sahinoglu, M.  Pajovic, Z.  Sahinoglu, Y.  Wang, P. V.  Orlik, 
T. Wada, IEEE Trans. Ind. Electron. 2018, 65, 4311.

[135]	 E. Kwak, S.  Jeong, J.-h. Kim, K.-Y. Oh, J. Power Sources 2021, 483, 
229079.

[136]	 W. Li, J. Zhu, Y. Xia, M. B. Gorji, T. Wierzbicki, Joule 2019, 3, 2703.
[137]	 P.  Fermín-Cueto, E.  McTurk, M.  Allerhand, E.  Medina-Lopez,  

M. F. Anjos, J. Sylvester, G. dos Reis, Energy AI 2020, 1, 100006.
[138]	 S. S.  Mansouri, P.  Karvelis, G.  Georgoulas, G.  Nikolakopoulos, 

IFAC-PapersOnLine 2017, 50, 4727.
[139]	 A.  Nuhic, T.  Terzimehic, T.  Soczka-Guth, M.  Buchholz, 

K. Dietmayer, J. Power Sources 2013, 239, 680.
[140]	 D. Yang, Y. Wang, R. Pan, R. Chen, Z. Chen, Energy Procedia 2017, 

105, 2059.
[141]	 T. Zahid, K. Xu, W. Li, C. Li, H. Li, Energy 2018, 162, 871.
[142]	 J. Guo, Z. Li, M. Pecht, J. Power Sources 2015, 281, 173.
[143]	 L. Ren, L. Zhao, S. Hong, S. Zhao, H. Wang, L. Zhang, IEEE Access 

2018, 6, 50587.
[144]	 R. R.  Richardson, M. A.  Osborne, D. A.  Howey, J. Power Sources 

2017, 357, 209.
[145]	 B.  Wu, W. D.  Widanage, S.  Yang, X.  Liu, Energy AI 2020, 1,  

100016.
[146]	 A. Jain, J. A. Bollinger, T. M. Truskett, AlChE J. 2014, 60, 2732.
[147]	 B. Sanchez-Lengeling, A. Aspuru-Guzik, Science 2018, 361, 360.
[148]	 R.  Olivares-Amaya, C.  Amador-Bedolla, J.  Hachmann, S.  Atahan-

Evrenk, R. S.  Sánchez-Carrera, L.  Vogt, A.  Aspuru-Guzik, Energy 
Environ. Sci. 2011, 4, 4849.

[149]	 M.-H. Lin, J.-F. Tsai, C.-S. Yu, Math. Probl. Eng. 2012, 2012, 756023.
[150]	 J. C. Spall, Introduction to Stochastic Search and Optimization: Esti-

mation, Simulation, and Control, Series in Discrete Mathematics 
and Optimization, John Wiley & Sons, Hoboken, NJ, USA 2003.

[151]	 K.  Alberi, M. B.  Nardelli, A.  Zakutayev, L.  Mitas, S.  Curtarolo, 
A.  Jain, M.  Fornari, N.  Marzari, I.  Takeuchi, M. L.  Green, 
M.  Kanatzidis, M. F.  Toney, S.  Butenko, B.  Meredig, S.  Lany, 
U.  Kattner, A.  Davydov, E. S.  Toberer, V.  Stevanovic, A.  Walsh, 
N.-G.  Park, A.  Aspuru-Guzik, D. P.  Tabor, J.  Nelson, J.  Murphy, 
A.  Setlur, J.  Gregoire, H.  Li, R.  Xiao, A.  Ludwig, L. W.  Martin,  
A. M. Rappe, S.-H. Wei, J. Perkins, J. Phys. D: Appl. Phys. 2018, 52, 
013001.

[152]	 G.  Houchins, V.  Viswanathan, J. Chem. Phys. 2020, 153,  
054124.

[153]	 C. Wang, K. Aoyagi, P. Wisesa, T. Mueller, Chem. Mater. 2020, 32, 
3741.

[154]	 K. Xu, Chem. Rev. 2004, 104, 4303.
[155]	 P. M. Tagade, S. P. Adiga, S. Pandian, M. S. Park, K. S. Hariharan, 

S. M. Kolake, npj Comput. Mater. 2019, 5, 127.
[156]	 Y.  Zhang, X.  He, Z.  Chen, Q.  Bai, A. M.  Nolan, C. A.  Roberts, 

D. Banerjee, T. Matsunaga, Y. Mo, C. Ling, Nat. Commun. 2019, 10, 
5260.

[157]	 Y.  Wang, T.  Xie, A.  France-Lanord, A.  Berkley, J. A.  Johnson, 
Y. Shao-Horn, J. C. Grossman, Chem. Mater. 2020, 32, 4144.

[158]	 A.  Barredo Arrieta, N.  Díaz-Rodríguez, J.  Del Ser, A.  Bennetot, 
S.  Tabik, A.  Barbado, S.  Garcia, S.  Gil-Lopez, D.  Molina, 
R. Benjamins, R. Chatila, F. Herrera, Inf. Fusion 2020, 58, 82.

[159]	 D. P. Finegan, S. J. Cooper, Joule 2019, 3, 2599.
[160]	 W. Q. Walker, J. J. Darst, D. P. Finegan, G. A. Bayles, K. L. Johnson, 

E. C. Darcy, S. L. Rickman, J. Power Sources 2019, 415, 207.
[161]	 K. Rumpf, M. Naumann, A. Jossen, J. Energy Storage 2017, 14, 224.
[162]	 J.-M. Tarascon, Philos. Trans. R. Soc., A 2010, 368, 3227.
[163]	 H.  Wenzl, I.  Baring-Gould, R.  Kaiser, B. Y.  Liaw, P.  Lundsager, 

J. Manwell, A. Ruddell, V. Svoboda, J. Power Sources 2005, 144, 373.
[164]	 L.  Gaines, R.  Cuenca, Costs of Lithium-Ion Batteries for Vehicles, 

Argonne National Laboratory, Lemont, IL, USA 2000.
[165]	 L. Wei, X. Xu, Gurudayal, J. Bullock, J. W. Ager, Chem. Mater. 2019, 

31, 7340.

Adv. Mater. 2022, 34, 2101474

 15214095, 2022, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202101474 by U
niversity of Shanghai for Science and T

echnology, W
iley O

nline L
ibrary on [20/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1109/ICPHM49022.2020.9187060
https://doi.org/10.1109/ICPHM49022.2020.9187060


© 2021 Wiley-VCH GmbH2101474  (17 of 17)

www.advmat.dewww.advancedsciencenews.com

Shuzhou Li received his B.Sc. degree, M.Sc. degree, and Ph.D. degree from Nankai University, 
Peking University, and University of Wisconsin, Madison, USA, respectively. He had worked as 
a postdoctoral fellow at Northwestern University, USA. Then, he joined the School of Materials 
Science and Engineering, Nanyang Technological University (NTU) and is currently an associate 
professor. His research interests focus on exploring the chemical and physical properties of mate-
rials by theoretical and computational tools.

Yonggang Wen is Professor of Computer Science and Engineering at Nanyang Technological 
University (NTU), Singapore. He has also served as the Associate Dean (Research) at College of 
Engineering at NTU Singapore since 2018. He received his Ph.D. degree in electrical engineering 
and computer science from Massachusetts Institute of Technology (MIT), Cambridge, USA, in 
2008. He serves on editorial boards for IEEE Transactions on Circuits and Systems for Video 
Technology, IEEE Transactions on Multimedia, etc. His research interests include cloud com-
puting, green data centers, distributed machine learning, blockchain, multimedia networks, and 
mobile computing. He is a Fellow of IEEE.

Qingyu Yan is currently a professor in the School of Materials Science and Engineering at 
Nanyang Technology University. He joined the School of Materials Science and Engineering of 
Nanyang Technological University as an assistant professor in 2008 and became a Professor in 
2018. He is currently the Chair of the Electrochemical Society, Singapore Section. He has been a 
fellow of Royal Society of Chemistry since 2018. He has published >300 papers (with a total cita-
tion of >27 000 and an h-index of 86) on the research area: battery development; thermoelectric 
materials and electrocalytic process for energy conversion.

Adv. Mater. 2022, 34, 2101474

 15214095, 2022, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202101474 by U
niversity of Shanghai for Science and T

echnology, W
iley O

nline L
ibrary on [20/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


